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Wavelet and other image transforms

The discrete Fourier transform is a member of an important class of l inear transforms 

that include the Hartley, sine, cosine, Walsh-Hadamard, Slant, Haar, and wavelet 

transforms. These transforms, which are the subject of this chapter, decompose 

functions into weighted sums of orthogonal or biorthogonal basis functions, and can be 

studied using the tools of l inear algebra and functional analysis. When approached 

from this point of view, images are vectors in the vector space of all images. Basis 

functions determine the nature and usefulness of image transforms. Transforms are 

the coeff icients of l inear expansions. And for a given image and transform (or set of 

basis functions), both the orthogonality of the basis functions and the coeff icients of 

the resulting transform are computed using inner products. All of an image’s 

transforms are equivalent in the sense that they contain the same information and 

total energy. They are reversible and differ only in the way that the information and 

energy is distributed among the transform’s coeff icients.



2D-Discrete Wavelet Transformation and its applications 
in Digital Image Processing using MATLAB

Spatial domain refers to the normal image space represented as a 

matrix of pixels. Transformation techniques in this domain are directly 

operated on image pixel values. The values are manipulated to achieve 

desired enhancement.

•Frequency domain deals with the rate at which these pixel values 

change in spatial domain. Frequency simply refers to the rate of 

change of color components in an image. Areas of high frequencies 

experience rapid color changes, whereas parts that change gradually 

contain low frequencies.



Wavelet Transformation

•Okay, so, what exactly are wavelets, and why do we need this 

transformation? According to Wikipedia,

•A wavelet is a wave-like oscillation with an amplitude that begins at 

zero, increases, and then decreases back to zero. It can typically be 

visualized as a “brief oscillation” like one recorded by a seismograph 

or heart monitor.

https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Amplitude


Wavelet Transformation

•Wavelets are functions that are concentrated in time and frequency 

around a certain point. This transformation technique is used to 

overcome the drawbacks of fourier method. Fourier transformation, 

although it deals with frequencies, does not provide temporal details. 

According to Heisenberg’s Uncertainty Principle , we can 



Wavelet Transformation

•either have high frequency resolution and poor temporal resolution or vice 

versa.

•This wavelet transform finds its most appropriate use in non-stationary 

signals. This transformation achieves good frequency resolution for low-

frequency components and high temporal resolution for high-frequency 

components.

•This method starts with a mother wavelet such as Haar, Morlet, Daubechies, 

etc. The signal is then essentially translated into scaled and shifted versions 

of mother wavelet.



Wavelet based Compression of Images

•Wavelet compression is a form of data compression well suited for image 

compression. The idea is to store image data in as l itt le space as possible in a f i le. 

Wavelet compression either be lossless or lossy.

•In this section we will use wavelet decomposit ion for compression of images. We use 

thresholding on detai l components after performing a 4-level decomposit ion. This is 

done by sorting the wavelet coeff icients and retain the f irst 20%, 10%, 1% and 0.5% 

largest coeff icients and threshold everything else out to zero.

•The code below shows the implementation of image compression using a 4-level 

wavelet decomposit ion in MATLAB. This can be done easily with the help of inbuilt 

methods such as wavedec2() and waverec2() to decompose and reconstruct images 

to /from sub-signals.

https://en.wikipedia.org/wiki/Computer_file






Wavelet Transformation

•Since we are retaining only a set of coefficients at each 

level, this indirectly acts as a frequency domain filter ( low-

pass, high-pass, band-pass, etc. ) which is generally used 

in fourier transformations. Wavelet compression is a better 

version of fourier compression since we’re dealing with 

wavelets.



BASIS FUNCTIONS IN THE TIME-FREQUENCY PLANE 

➢ The majority of the energy falls in a rectangular region ,called a Heisenberg box or 

cell

➢ Since the support of a function can be def ined as the set of points where the 

function is nonzero, Heisenberg’s uncertainty principle tells us that it is impossible 

for a function to have f inite support in both time and frequency.

➢ basis functions are scaled and shif ted small waves, called wavelets

➢ each wavelet basis function is characterized by a unique spectrum and location in 

time.



BASIS FUNCTIONS IN THE TIME-FREQUENCY PLANE 

where f denotes frequency and H(f) is 
the Fourier transform of h(t).
Then the energy of basis function h, as 

illustrated in Fig is concentrated at 
(µt, µf) on the time-frequency plane.



BASIS IMAGES

In the context of digital image processing, F is a 2-D image, and the S(u,v) are called 

basis images. They can be arranged in an N*N array, as shown in Fig. 7.6(a), to 

provide a concise visual representation of the 2-D basis functions they represent. 



FOURIER-RELATED TRANSFORMS

➢ three Fourier-related transforms that are real rather than complex -valued the 

discrete Hartley transform, discrete cosine transform, and discrete sine 

transform. 

➢ All three transforms avoid the computational complexity of complex numbers 

and can be implemented via fast FFT-like algorithms.

❑ THE DISCRETE HARTLEY TRANSFORM

➢ Its main distinction from the DFT is that it transforms real inputs to real outputs, 

with no intrinsic involvement of complex numbers.

➢ 8 8 * basis images of the two transforms are also similar. The basis images of 

maximum frequency occur when u and v are N/2 or 4.



FOURIER-RELATED TRANSFORMS

❑ THE DISCRETE COSINE TRANSFORM

➢ A discrete cosine transform (DCT) expresses a f inite sequence of data points in 

terms of a sum of cosine functions oscil lating at different frequencies.

➢ where small high-frequency components can be discarded .The use of cosine rather 

than sine functions is critical for compression

➢ compresses data in sets of discrete DCT blocks. DCT blocks can have a number of 

sizes, including 8x8 pixels for the standard DCT, and varied integer DCT sizes 

between 4x4 and 32x32 pixels.

➢ The DCT has a strong "energy compaction" property , capable of achieving high 

quality at high data compression ratios .However , blocky compression artifacts 

ار ث عيوب /ا can appear when heavy DCT compression is applied.



FOURIER-RELATED TRANSFORMS

❑ THE DISCRETE SINE TRANSFORM

DSTs are widely employed in solving partial differential equations by spectral methods, 

where the different variants of the DST correspond to slightly different odd/even 

boundary conditions at the two ends of the array



The Hadamard Transform is also known as :

❑ Walsh-Hadamard transform

❑ Hadamard-Rademacher-Walsh transform

▪ It is an example of a general ized class of Fourier transforms.

▪ It per forms an orthogonal ,  symmetric operations.

▪ The Hadamard transform 𝐻𝑚 i s  a 2𝑚 x 2𝑚 matrix.

▪ Hadamard matrix transforms 2𝑚 real numbers 𝑥𝑛 into 2𝑚 real numbers 𝑋𝑘

The Hadamard transform can be def ined in two ways:

❑ Recursively 

❑ Binary representation

Hadamard Transform



Applications of Hadamard transform:

▪ signal Processing

▪ Data Compression

▪ Data Encryption

▪ In many scientif ic methods such as NMR, mass spectroscopy and crystal lography etc.



Hadamard transform for 1D functions

▪ the kernel of 1D Hadamard transform is :

g(𝑥 , 𝑢)=
1

√𝑁
(−1)σ𝑖=0

𝑛−1 𝑏 𝑖 (𝑥)𝑏 𝑖 (𝑢)

▪ 1D Hadamard transform H(u) can be return as :

𝐻 𝑢 =
1

𝑁
σ𝑥=0
𝑁−1 𝑓(𝑥) (−1)σ𝑖=0

𝑛−1 𝑏 𝑖 (𝑥)𝑏 𝑖 (𝑢)

𝑤ℎ𝑒𝑟𝑒 𝑁 = 2𝑛

▪ The inverse Hadamard transform :

f 𝑥 =
1

𝑁
σ𝑥=0
𝑁−1 𝐻(𝑢) (−1)σ𝑖=0

𝑛−1 𝑏 𝑖 (𝑥)𝑏 𝑖 (𝑢)

i nve rse  ke rne l  ℎ (𝑥 , 𝑢 )



Hadamard transform for 2D functions

▪ the kernel of 1D Hadamard transform is :

𝑯 𝒖, 𝒗 =
1

𝑁
σ𝑥=0
𝑁−1 σ𝑦=0

𝑁−1 𝒇(𝒙, 𝒚) (−1)σ𝑖=0
𝑛−1 [𝑏 𝑖 𝑥 𝑏 𝑖 𝑢 + 𝑏 𝑖 𝑦 𝑏 𝑖 𝑢 ]

▪ The inverse Hadamard transform :

𝒇(𝒙, 𝒚) =
1

𝑁
σ𝑥=0
𝑁−1 σ𝑦=0

𝑁−1 𝑯 𝒖, 𝒗 [ ς𝑖=0
𝑛−1(−1)

σ𝑖=0
𝑛−1 [𝑏 𝑖 𝑥 𝑏 𝑖 𝑢 + 𝑏 𝑖 𝑦 𝑏 𝑖 𝑢 ]

]

▪ Hadamard kernel is:

❑ Separable 

❑ Symmetric

It means g 𝑥 , 𝑦 , 𝑢 , 𝑣 = 𝑔1 𝑥 , 𝑢 𝑔2 𝑦, 𝑣 = ℎ1 𝑥 , 𝑢 ℎ2 𝑦, 𝑣



▪ The Hadamard transform of an image 𝑓 is denoted as :

𝑔 = 𝐴 × 𝑓 × 𝐴

where the matrix A is related to Hadamard matrix as

𝐴 =
1

√𝑁
𝐻𝑞1𝑞

𝑁 → dimension of an image

▪ The basic Hadamard matrix  is  𝐻𝑁 =
1 1
1 −1

▪ The higher order Hadamard matrix  is 𝐻2𝑁 =
𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁



EX: 𝐻4×4 =

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1



Hadamard Transform in MATLAB

▪ Hadamard transform:

▪ Inverse Hadamard transform:



Walsh transform 

▪ The Walsh transform is non-sinusoidal ,  orthogonal transformation technique that 

decomposes a signal into a set of basis functions.

▪ Sequence means number of sign changes in row. 

▪ Walsh transform is related to Hadamard transform.

▪ Walsh transform appl ications

❑ Power spec t rum ana lys is  

❑ F i l te r ing

❑ Speech  process ing

❑ Med ica l  s igna l s

❑ Mul t ip lex ing and  cod ing in  communicat ion

❑ Log ica l  des ign and  ana lys is

❑ So lv ing non l inear  d i f f e rent ia l  equat ions  e tc .



▪ For 4 × 4 Hadamard matrix , let us check sign change in row:

𝐻4×4 =

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

Row 1= 1   1    1    1   ,sign changes=0

Row 2= 1  -1    1   -1   ,sign changes=3

Row 3= 1   1   -1   -1   ,sign changes=1

Row 4= 1  -1   -1    1   ,sign changes=2



▪ By arranging rows according to sign changes we got Walsh matrix

𝑊4×4 =

1 1
1 1

1 1
−1 −1

1 −1
1 −1

−1 1
1 −1

▪ Walsh transform for 1D function:

𝐹 = 𝑊 × 𝑓

▪ Walsh transform for 2D function:

𝐹 = 𝑊 × 𝑓 × 𝑊 𝑇 = 𝑊 × 𝑓 × 𝑊

since W matrix is symmetric



EX: 𝑓 𝑥 = 1,2,0,4 apply Walsh transform

For 1D    𝐹 = 𝑊 × 𝑓

𝐹 =

1 1
1 1

1 1
−1 −1

1 −1
1 −1

−1 1
1 −1

1
2
0
3

=

6
0
2
4



Walsh transform in MATLAB

▪ Walsh transform:

▪ Inverse Walsh transform:



Slant transform 

▪ widely used in image compression.

▪ Orthogonal and very fast.

▪ Its kernel can be generated recursively l ike Hadamard transform.

▪ The s lant transform of order 2 × 2 is  def ined as:

𝑠1 =
1

√2

1 1
1 −1

▪ In general,  an 𝑁 × 𝑁 matr ix can be recursively given as:

𝑠𝑁 =

1 0
𝑎𝑁 𝑏𝑁

0

0 𝐼
(
𝑁

2
)−2

1 0
−𝑎𝑁 𝑏𝑁

0

0 𝐼
(
𝑁

2
)−2

0 1
−𝑏𝑁 𝑎𝑁

0

0 𝐼
(
𝑁

2
)−2

0 −1
𝑏𝑁 𝑎𝑁

0

0 𝐼
(
𝑁

2
)−2

×

𝑠𝑁
2

0

0 𝑠𝑁
2

eq(1)



Here        𝑏𝑁 = (1 + 4𝑎𝑁−1
2 ) Τ−1

2 eq(2) 

𝑎𝑁 = 2 × 𝑏𝑁 × 𝑎𝑁−1 eq(3)

▪ 𝐼𝑁 identity matrix 

Let us generate kernel for 𝑁 = 4

𝑁 = 2𝑛 , 𝑛 = 2 , 𝑠2 =
1 1
1 −1

𝑏2 = (1 + 4(1)) Τ−1
2=

1

√5

𝑎2 = 2 ×
1

√5
× 1 =

2

√5



𝐴2 =

1 0
𝑎𝑁 𝑏𝑁

0

0 𝐼
(
𝑁

2
)−2

1 0
−𝑎𝑁 𝑏𝑁

0

0 𝐼
(
𝑁

2
)−2

0 1
−𝑏𝑁 𝑎𝑁

0

0 𝐼
(
𝑁

2
)−2

0 −1
𝑏𝑁 𝑎𝑁

0

0 𝐼
(
𝑁

2
)−2

×
𝐴1 0
0 𝐴1

𝐴2 =
1

√2
×

1 0
2

√5

1

√5

1 0
−2

√5

1

√5

0 1
−1

√5

1

√5

0 −1
1

√5

2

√5

×
1

√2
×

1 1
1 −1

0 0
0 0

0 0
0 0

1 1
1 −1



Therefore, the f inal slant transform of order 4 × 4 is given as 

𝐴2 =

1 0
3

√5

1

√5

1 0
−1

√5

−3

√5

1 −1
1

√5

−3

√5

−1 1
3

√5

−1

√5

Matrix A is real ,  not symmetric ant unitary

▪ The forward slant transform given as

F = 𝐴 × 𝑓

▪ The inverse slant transform given as

𝑓 = 𝐴𝑇 × 𝐹



Slant transform for 2D

▪ This logic can be extended to 2D images also

▪ The forward slant transform for 2D given as

F = 𝐴 × 𝑓 × 𝐴𝑇

▪ The inverse slant transform for 2D given as

𝑓 = 𝐴𝑇 × 𝐹 × 𝐴



slant Transform in MATLAB

▪ Slant transform:

▪ Inverse Slant transform: 



Haar transform

▪ Haar proposes the Haar transform in 1910

▪ Due to its low computing requirement, the Haar transform has been mainly used for 

image processing and pattern recognition.

▪ Therefor two-dimensional signal processing is an area of ef f ic ient applications of Haar 

transforms due to their wavelet l ike structure.

▪ Haar transform is real and orthogonal 

▪ It is very fast

▪ It is separable and symmetric.

▪ The basis vectors are sequency ordered.

▪ It has poor energy compaction for images.



▪ Elements +1 ,-1 ,0

Procedure  to generate kernel of Haar transform:

1) Find the order N let n = log 𝑁

2) Determine p & q

❑ p ranges from 0 to n-1

❑ i f  p=0 then q=0 or q=1 , e lse 1≤q≤ 2𝑝

3) Determine value of K 

K= 2𝑝+q-1



4) i f  k = 0

ℎ0 𝑧 = ℎ00 𝑧 =
1

√𝑁
𝑓𝑜𝑟 𝑧 ∈ 0,1

else    ℎ𝑝𝑞 𝑧 =
1

√𝑁

2𝑝 𝑖𝑓
𝑞−1

2𝑝
≤ 𝑧 ≤

ൗ𝑞−1
2

2𝑝

−2𝑝 𝑖𝑓
ൗ𝑞−1
2

2𝑝
≤ 𝑧 ≤

𝑞

2𝑝

0 𝑖𝑓𝑧 ∈ 0,1

EX: base for N=2 

If N=2, then n=log N =log 2 =1

So, the value of p=0 , therefore q=0,1



K=2𝑝 + 𝑞 − 1 = ቊ
0 for 𝑝 = 0 , 𝑞 = 0
1 for 𝑝 = 0 , 𝑞 = 1

So,     where k=0 , ℎ0 𝑧 =
20

√2
=

1

√2

where k=1 , ℎ0 𝑧 =
−20

√2
=

−1

√2

▪ Therefore 2 × 2 Haar matrix is given as :

𝐴2 =
1

√2

1 1
1 −1

▪ 4 × 4 Haar matrix is given as :

𝐴2 =
1

√2

1 1
1 1

1 1
−1 −1

−√2 −√2
0 0

0 0
−√2 −√2



Haar Transform in MATLAB

▪ Haar Transform:

▪ Inverse Haar Transform :


